

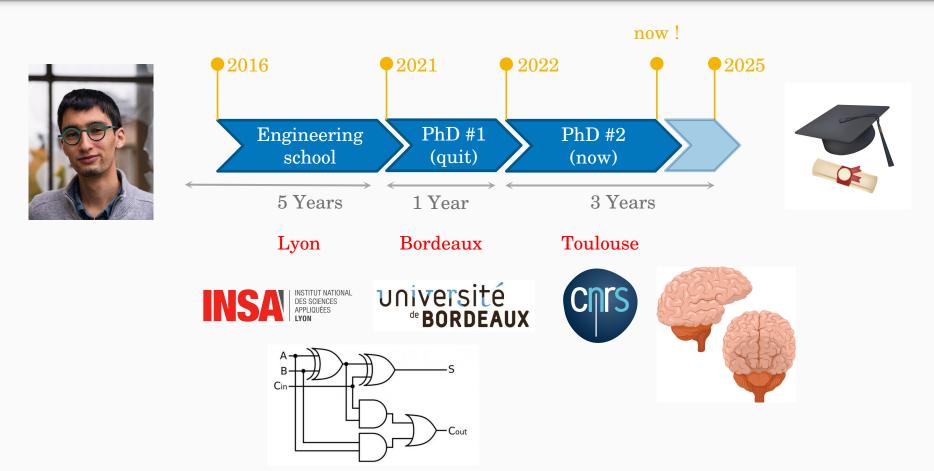
Modelling the Dynamics of Sensory Neural Responses

For low-level modelling of the brain

Ulysse Rançon

ulysse.rancon@cnrs.fr

My background



Outline

- I. What is a model?
- II. Models of neurons / Spiking Neural Networks (SNNs)
- III. Neuromorphic computing and sensing
- IV. Conclusion

Little to no maths

Large overview

Main keywords

Starting point for self-study!

What is modelling ("modélisation")?

Taking a step back

Essentially a **description of reality** A "model" can be... just *anything*!

Essentially a **description of reality** A "model" can be... just *anything*!

"The more I drink coffee, the less I sleep"

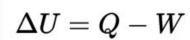
even just an idea...!

Essentially a **description of reality** A "model" can be... just *anything*!

"The more I drink coffee, the less I sleep"

even just **an**idea...!

a computer simulation of many small agents thinking they have a life on their own...



a physics formula...

a live animal...

in vitro neurons in a petri dish, extracted from animals (therefore killing them)...

Essentially a **description of reality** A "model" can be... just *anything*!

"The more I drink coffee, the less I sleep"

even just an idea...!

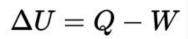
a computer simulation of many small agents thinking they have a life on their own...

Essentially a **description of reality** A "model" can be... just *anything*!

"The more I drink coffee, the less I sleep"

even just **an**idea...!

a computer simulation of many small agents thinking they have a life on their own...



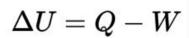
a physics formula...

Essentially a **description of reality** A "model" can be... just *anything*!

"The more I drink coffee, the less I sleep"

even just **an**idea...!

a computer simulation of many small agents thinking they have a life on their own...



 $a \ \textbf{physics formula}...$

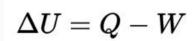
a live animal...

Essentially a **description of reality** A "model" can be... just *anything*!

"The more I drink coffee, the less I sleep"

even just **an**idea...!

a computer simulation of many small agents thinking they have a life on their own...



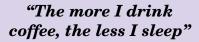
a physics formula...

a live animal...

in vitro neurons in a petri dish, extracted from animals (therefore killing them)...

How to choose my model?

Depends on what you are working on...



 $\Delta U = Q - W$

even just an idea...! NO! a physics formula...

How to choose my model?

Depends on what you are working on...

"The more I drink coffee, the less I sleep"

 $\Delta U = Q - W$

even just an idea...!

a $oldsymbol{physics}$ $oldsymbol{formula}...$

A GOOD model:

- provides a **quantitative description** of a feature, a phenomenon
- a qualitative description
- inside and outside the scope of what served to conceive it

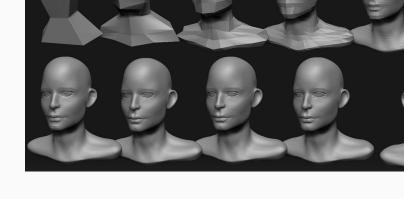
It must be also:

- as **simple** as possible (Occam's razor)
- easily **expandable**

Abstraction levels when modelling

...And how much detail you want to capture!

"The more I drink coffee, the less I sleep"



Because of caffeine

Theory of how caffeine is digested

Depends on many factors:

- amount in the coffee cup
- person constitution
- time of the day/night
- ...

The essence of modelling: Qiestion

"All models are wrong, but some are __(?)__"

George Box (1919-2013)

"What I cannot __(?)__, I cannot understand"

Richard Feynman (1918-1988)

The essence of modelling: Answers

"All models are wrong, but some are **useful**"

George Box (1919-2013)

"What I cannot **create**, I cannot understand"

Richard Feynman (1918-1988)

Models of Biological Neurons /

Spiking Neural Networks (SNNs)

According to you, what does this mean?

A short history of computational neuroscience

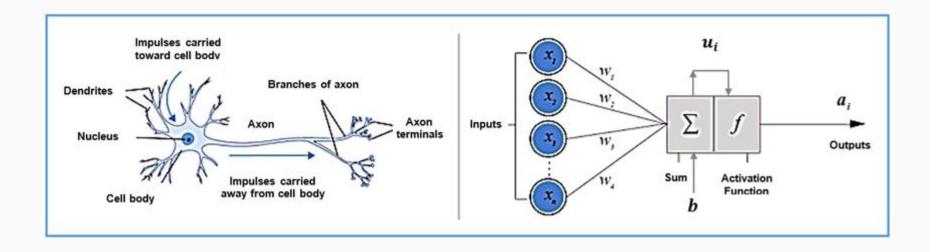


Ramon y Cajal discovery of neurons

McCulloch & Pitts the Perceptron

Louis Lapicque Integrate-and-Fire (IF) model

Hodgkin & Huxley Eponimous model



Supposed to mimick how actual neurons work:

- <u>receive</u> **weighted contributions** of several presynaptic inputs (electrical currents)
- **integrates** (i.e. sum) them
- <u>outputs</u> a (nonlinear) activation

Q: Who can write the equation for this model?

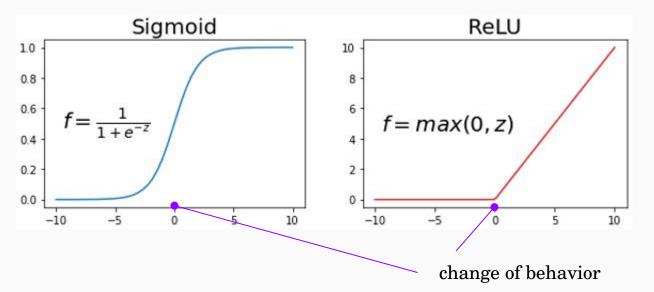
Q: Who can write the equation for this model?

$$a = f(\sum_i w_i x_i + b)$$

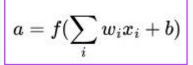
Q: Who can write the equation for this model?

$$a = f(\sum_i w_i x_i + b)$$

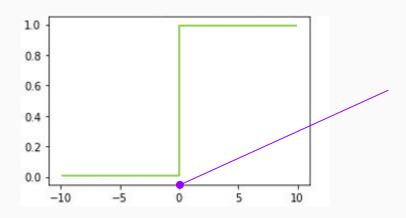
in previous classes / in deep learning, f was / is a **sigmoid** or **ReLU**



Q: Who can write the equation for this model?



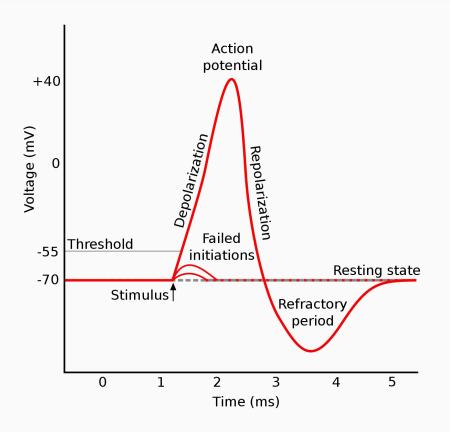
in the MCP model, it is a **Heaviside** function!



change of behavior (again) at a certain **threshold** θ (here: 0)

The output is **All or nothing** / 1 or 0!

Spikes / Action potentials

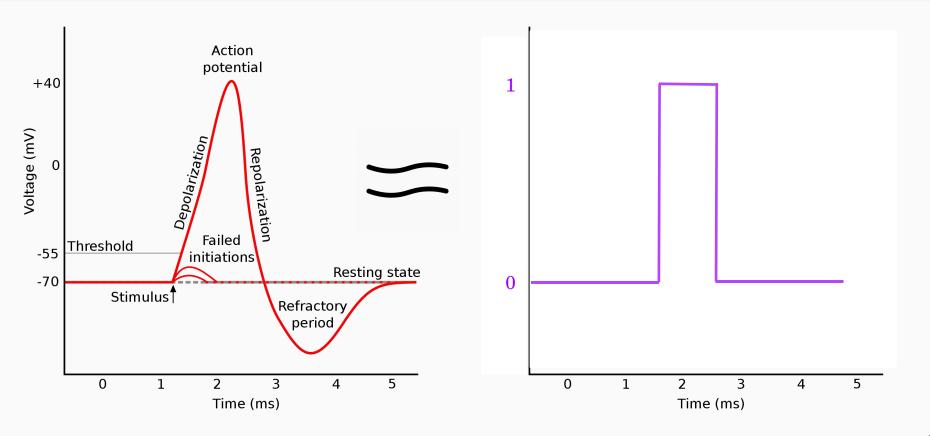


Real biological neurons emit **spikes**: stereotyped electrical impulses ("all-ornone") emitted when a neuron is sufficiently stimulated

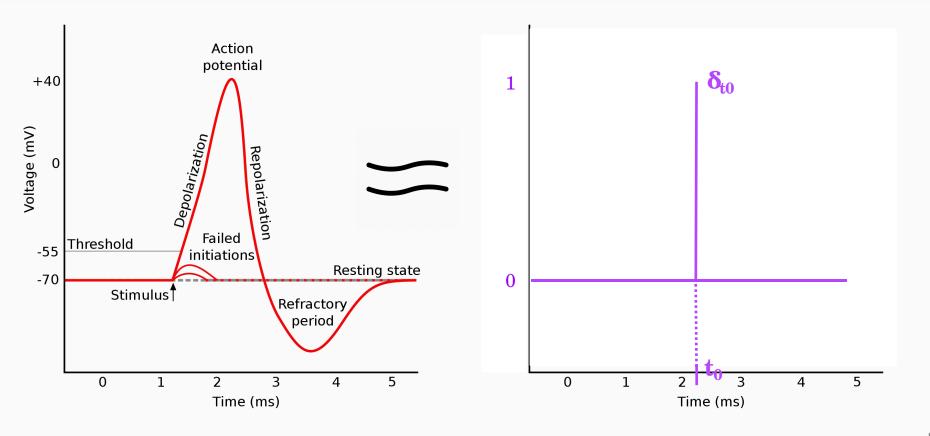
Spikes propagate along the **axons** without attenuation ("active propagation").

Neurons can only exchange information via <u>binary spikes</u>

Spikes / Action potentials



Spikes / Action potentials



The Integrate and Fire (IF) neuron model

What was lacking in the MCP model, is a **memory trace**

The state of a neuron at a given instant directly depends on its previous state (makes sense, no?), i.e. they are **recurrent**

In reality, biological neurons are characterized by the **membrane potential** V which has a **resting value** V_{rest}

Let's complexify the MCP model a bit:

$$V_t = V_{t-1} - \sum_i w_i x_i$$

$$S_t = H(V_t - \theta)$$

$$V_t > heta \longrightarrow V_t = V_{rest}$$

(Potential update) $V_t = V_{t-1} - \sum_i w_i x_i$ (Spike at time t) $S_t = H(V_t - \theta)$ (Reset condition) $V_t > \theta \longrightarrow V_t = V_{rest}$ Integrate-and-Fire (IF) spiking model (discrete time equation)

Complexifying the IF with a refractory period

Real neurons have a refractory period: their membrane potential is maintained to V_{rest} during T time-steps after a spike

$$egin{aligned} V_t &= V_{t-1} - \sum_i w_i x_i \ S_t &= H(V_t - heta) \ V_t &> heta \longrightarrow V_t = V_{rest} \ \hline t - t_{ ext{last spike}} &< T \longrightarrow V_t = V_{rest} \end{aligned}$$

(Refractoriness)

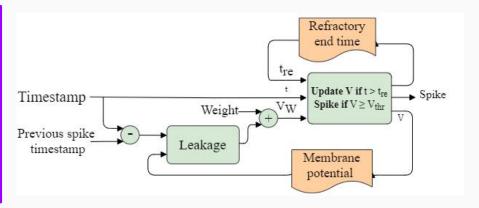
refractory IF

Towards the Leaky-Integrate and Fire (LIF) neuron model

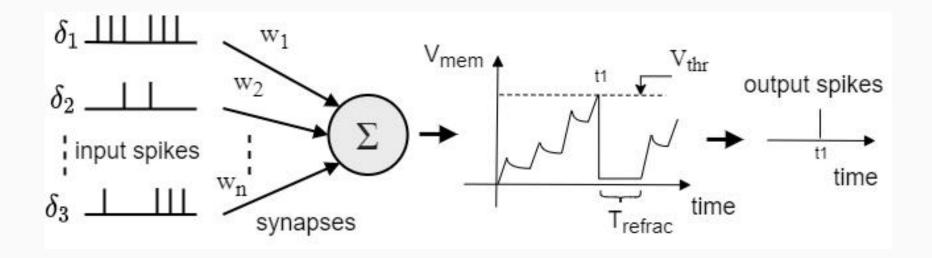
In real neurons, the membrane potential **leaks** back to its rest value: their membrane potential is maintained to V_{rest} during T time-steps after a spike

refractory LIF

$$egin{aligned} V_t &= V_{t-1} + \sum_i w_i x_i iggl[-rac{1}{ au} V_{t-1} iggr] \ S_t &= H(V_t - heta) \ V_t &> heta \longrightarrow V_t = V_{rest} \ t - t_{ ext{last spike}} < T \longrightarrow V_t = V_{rest} \end{aligned}$$



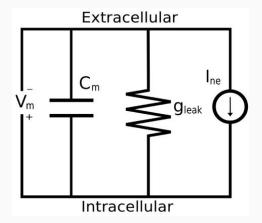
Example LIF behavior

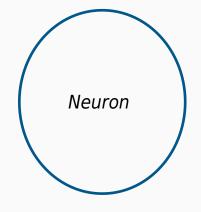


Electrical analogy

The LIF model comes from biophysics!

- Biological neurons are **electrically charged**:
 difference in potential between the inside and the
 outside of the cell = membrane potential
- **Ion channels** act as a Resistance
- Act as a **RC circuit** (Resistive & Capacitive)

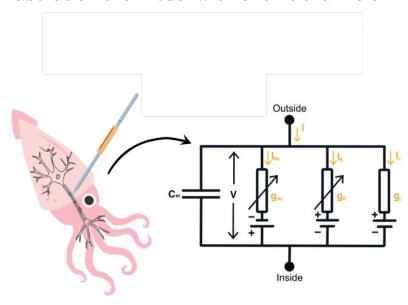




The Hodgkin-Huxley model

1952:

- H&H experiment on the giant squid axon
- Elaboration of a model with 3 ionic channels



1963:

Nobel prize in Physiology or Medicine

 $\underline{https://perceptron.blog/hodgkin-huxley/}$

The Hodgkin-Huxley model

$$C\frac{dV}{dt} = -G_L(V - V_L) - G_{Na}m^3h(V - E_{Na}) - G_Kn^4(V - E_K) + I_e,$$
(13)

where V is the membrane potential, I_e is an external current and the gating variables m, n and h obey the first-order ODEs

$$\frac{dm}{dt} = \alpha_m(V)(1-m) - \beta_m(V)m, \tag{14}$$

$$\frac{dh}{dt} = \alpha_h(V)(1-h) - \beta_h(V)h, \tag{15}$$

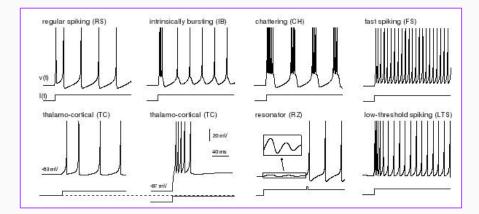
$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n, \tag{16}$$

with transition rates $\alpha(V)$ and $\beta(V)$ given by

$$\alpha_m(V) = \frac{0.1(V+40)}{1-e^{-0.1(V+40)}}; \quad \beta_m(V) = 4e^{-0.0556(V+65)},$$
 (17)

$$\alpha_h(V) = 0.07e^{-0.05(V+65)}; \quad \beta_h(V) = \frac{1}{1 + e^{-0.1(V+35)}},$$
 (18)

$$\alpha_n(V) = \frac{0.01(V+55)}{1 - e^{-0.1(V+55)}}; \quad \beta_n(V) = 0.125e^{-0.0125(V+65)}. \tag{19}$$



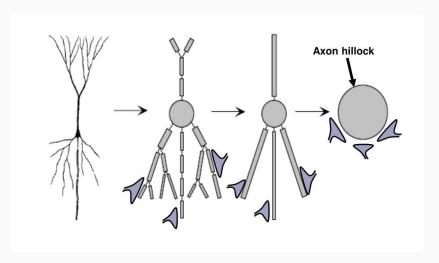
A very complex and precise model...

...capable of much more than the LIF!

Point vs Compartmental models

Compartmental models take into account the neuron's 2d or 3d morphology.

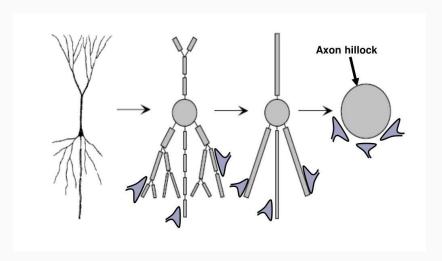
- **discretize** the axon and dendrites into N small compartments
- presynaptic neurons can be anywhere along these axes

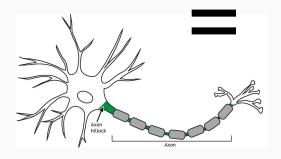


Point vs Compartmental models

Compartmental models take into account the neuron's 2d or 3d morphology.

- **discretize** the axon and dendrites into N small compartments
- presynaptic neurons can be anywhere along these axes
- apply the **laws of physics** (wave equation, telegrapher's equations)
- --> propagation of the AP !!!



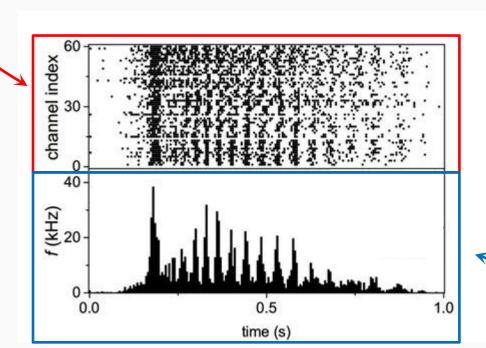


Raster plots and derivatives

Raster plot

To represent the simultaneous spiking activity (spike trains) of:

- several neurons in a population
- a single neurons over repeated trials of the same condition

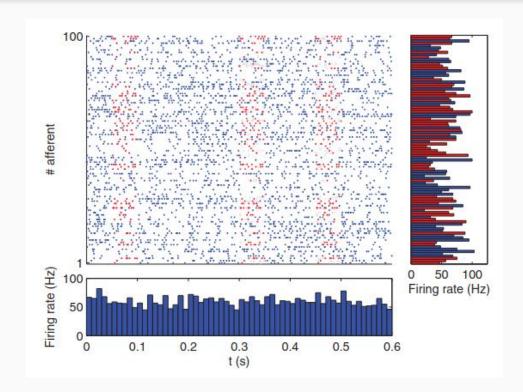


Spike histogram

Sum or average spikes over channels to give:

- population activity
- the target neuron's firing probability or firing rate

Coincidence detectors / Spike patterns



For a given action / thought / stimulus, a **pattern of spikes** are repeated, with more or less **variability**.

Downstream (post-synaptic) neurons learn to **detect** (spike in response to) these patterns.

Masquelier et al. (2008) Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains, PLoS One

Coincidence detectors / Spike patterns



For a given action / thought / stimulus, a **pattern of spikes** are repeated, with more or less **variability**.

Downstream (post-synaptic) neurons learn to **detect** (spike in response to) these patterns.

But how?

Masquelier et al. (2008) Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains, PLoS One

Spike-Timing Dependent Plasticity (STDP)

A local, **Hebbian** learning rule:

"Neurons that fire together, wire together"



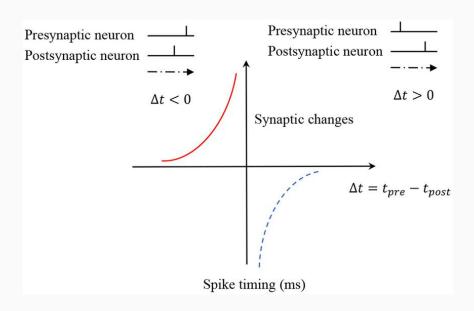
Features:

- local
- unsupervised
- biologically-plausible

Spike-Timing Dependent Plasticity (STDP)

A local, **Hebbian** learning rule:

"Neurons that fire together, wire together"



between directly connected neurons only, macroscopic behaviors emerge from microscopic changes

Features:

no label / groundtruth

- local
- unsupervised
- biologically-plausible

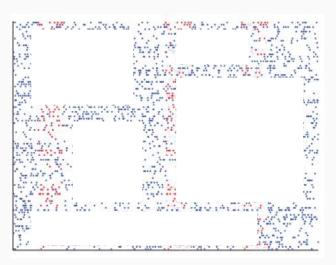
observed in the brain, experimental evidence

Sparse coding

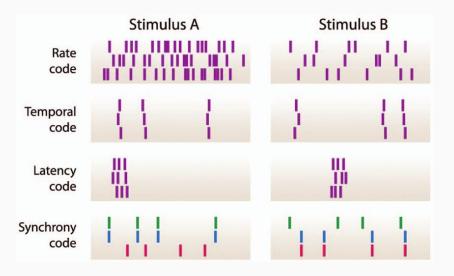
Generating action potentials consumes substantial energy.

To limit overconsumption, neurons in the brain use patterns with very few spikes: sparse coding

This is a form of **homeostasis**, under **evolutionary pressure**



Temporal vs Rate coding



There many ways to encode (the same) information.

Biological neurons use 2 main types:

<u>Temporal coding</u>:

Information is encoded in the relative timing between presynaptic spikes

Rate coding:

Information is encoded in the firing rate (i.e. the number of incoming spikes)

SNNs vs ANNs

SNNs originated as low-level models of the brain.

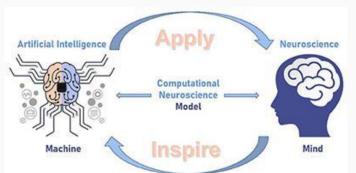
Contrarily to ANNs, SNNs only output binary spikes, not real values.

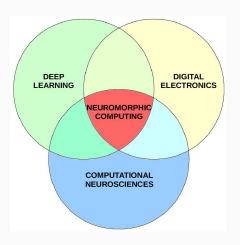
To obtain real values and to convey finer information, need:

- time as an additional dimension,
- to average across other neurons in the population (<u>space</u>)

BUT they can implement sparse coding for higher energy efficiency

 \rightarrow take inspiration for engineering?





Neuromorphic computing and sensing

Brain-inspired AI

The energy efficiency of the brain

Q: How much is the brain's estimated power consumption?

The **incredible** energy efficiency of the brain

Neuromorphic chips

Neuromorphic chips

Neuromorphic chips

Electronic chips ("puces") specially designed to emulate spiking neural networks (SNNs)

GPU / Graphics card --> gaming Neuromorphic chips --> SNNs

Neuromorphic chips: main principle

Electronic chips ("puces") specially designed to emulate spiking neural networks (SNNs)

Only consume power when generating a spike (like the brain) Few spikes (sparse coding) ==> little energy consumption

IBM TrueNorth

Advantages (over regular computers/chips):

- ultra **low power** consumption
- very **fast**
- asynchronous

Industrial applications:

- Embedded systems
- IoT
- BCIs
- ...

HBP SpiNNaker

Intel Loihi 2

Brainchip Akida

Neuromorphic Retina: pros and cons

Also known as the **Dynamic Vision Sensor (DVS)** or **Event Camera**

Mimics how actual retinas work: emit a spike only on big changes of luminance at a given pixel (location)

https://youtu.be/MjX3z-6n3iA?si=IHiwIEPFFPPMySS6

DVS event streams contain a lot of information!

Proof: quality grayscale images can be reconstructed from events thanks to deep neural networks!

These reconstructed videos inherit the benefits of event data:

- events are not subject to motion blur → reconstructions cleaner than frame based cameras
- events have a higher dynamic range → same
- events have a high temporal resolution → reconstruction / information retrieval possible at high FPS rates

10 1100/TDAMI 0010 0009900

Many types of information can be retrieved:

- **intensity** (this work)
- **optical flow** (Javier's)
- **depth** (StereoSpike)

H. Rebecq, R. Ranftl, V. Koltun and D. Scaramuzza, "**High Speed and High Dynamic Range Video with an Event Camera**," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 43, no. 6, pp. 1964-1980, 1 June 2021, doi:

Neuromorphic Retina: pros and cons

Feature \ Camera type	Event-based	Frame-based	
Power consumption	Very low (~ mW)	~W	$\stackrel{Energy-}{\rightleftharpoons} efficient$
Temporal resolution	Very high (~ μs)	60 FPS >~ 10 ms	No motion blur!
Spatial Resolution	Low (<1 MPx), best 1280x720	Very High (>10 MPx), e.g. Huawei P20	
Dynamic Range	Very high (120 dB)	~50 dB	Dim /Bright light ok!
Data efficiency	Sparse events, compact representation	Redundant information	
Mode	Asynchronous	Synchronous	Fast
Price	High (several k €)	Low	

Neuromorphic Cochleas

Equivalent of the DVS but for audio: **Dynamic Audio Sensor (DAS)**

show raster plots

Conclusion

_

Outline

- I. What is a model?
- II. Models of neurons / Spiking Neural Networks (SNNs)
- III. Neuromorphic computing and sensing
- IV. Conclusion

Little to no maths

Large overview

Main keywords

Starting point for self-study!

Going further... (Some exercises)

Exercise #1:

Code by yourself, in Python, a LIF neuron in discrete time: with thresh=1, V_{rest} =0, and tau=10 It should receive a constant input current I=0.3 between time-steps 10 and 30. Simulate during 50 time-steps and plot the membrane potential and spikes. You will iterate through time-steps with a for loop.

Exercise #2:

Add a refractory period of T=5dt after each spike, during which potential is maintained to V_{rest} and launch a new simulation. Do you notic any differences?

Exercise #3:

Play with the input current! Change it to a ramp, and/or to a spike train, and see the difference in behavior on your neuron.

If you don't know where to start, you can use ChatGPT... BUT it's better if you do it yourself, and make sure you understand its answer!

Going further... (Programming / coding / modelling)

The Brian2 spiking neuron simulator (Python, with tutorials)

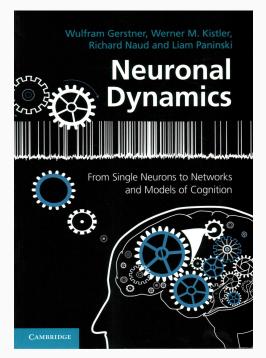
https://brian2.readthedocs.io/en/stable/

The NEST simulator (Python, tutorials)

https://nest-simulator.readthedocs.io/en/stable/

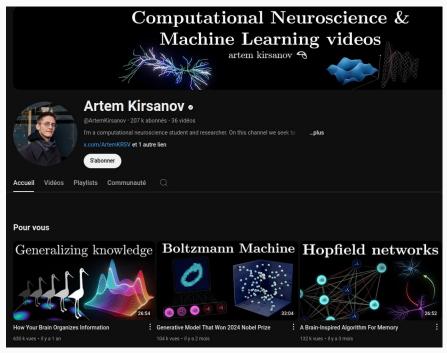
Going further... (Selected materials 1/2)

Free book and online course by Wulfram Gerster (EPFL)



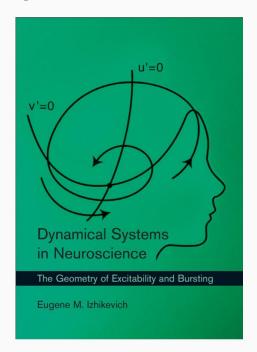
https://neuronaldynamics.epfl.ch/

Artem Kirsanov's YT channel

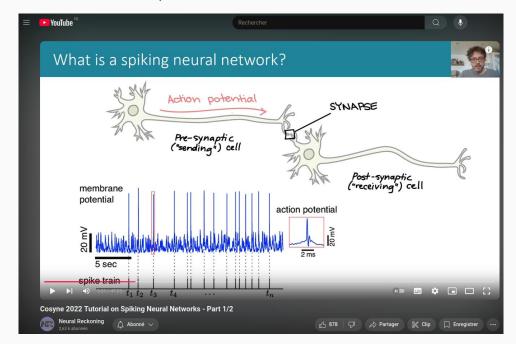


Going further... (Selected materials 2/2)

Eugene Izhikevich's textbook

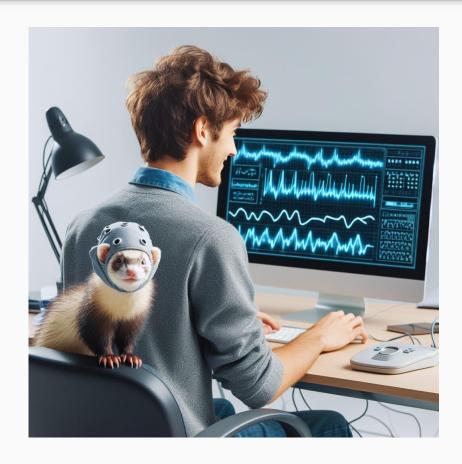


Cosyne 2022 Tutorial on Spiking Neural Networks (Dan Goodman, YouTube)



https://youtu.be/GTXTQ_sOxak?si=5BDwA02QHEjatV7t

Thank you for your attention!



Ask your questions now, or send me an email (ulysse.rancon@cnrs.fr)